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A new optimization principle is presented. Solutions of problems are partly, but sig-
nificantly, ruined and rebuilt or recreated afterwards. Performing this type of change
frequently, one can obtain astounding results for classical optimization problems. The
new method is particularly suited for more complex optimization problems (“dis-
continuous” ones, problems with hard-to-find admissible solutions, problems with
complex objectives or many constraints). The method is an all-purpose-heuristic.
Numerical results are given for the Traveling Salesman Problem, for the Vehicle
Routing Problem with time windows, and for network optimization. Numerical evi-
dence for the quality of the proposed principle is given. For most of the instances of a
research library of problems, the ruin and recreate (R&R) implementation achieved
the best published results. For many instances, better or much better solutions could
be found. c© 2000 Academic Press

Key Words:combinatorial optimization; Monte Carlo, threshold accepting; global
optimization; Traveling Salesman Problem; Vehicle Routing Problem; network op-
timization.

I. RUIN AND RECREATE, A FIRST LOOK AT THE PRINCIPLE

Before we give a more systematic introduction, we want to give the reader a quick
feeling for this new class of algorithms we introduce here. The basic element of our idea is
to obtain new optimization solutions by a considerable obstruction of an existing solution
and a following rebuilding procedure. Let’s look at a famous Traveling Salesman Problem
which was often considered in the literature (PCB442 problem of Gr¨otschel [1–8]). Suppose
we have found some roundtrip through all of the 442 cities like in Fig. 1.

That’s our initial or current solution of the problem. We “ruin” now a significant part
of the solution. That’s the easy part of it. When ruining the solution, think of a major
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FIG. 1. TSP-instance PCB442. Left, rather bad; middle, after a radial ruin; right, recreated.

FIG. 2. Best solutions for 4 instances from Solomon’s library of VRPTW problems. Left top, RC105; right
top, RC206; left bottom, R107; right bottom, R202.
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FIG. 3. NOPR on 6 locations with 5 demands of 10 Mbps. Left, input-demands and 1-hop NOP optimum
with total length 885; right, 2-hop NOP optimum with total length 562.

FIG. 4. Left, 2-step 2/3-hop NOPR optimum with total length 1048; right, 2/3-hop NOPR optimum with total
length 861.
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disintegration or devastation. Mathematically speaking, we take some cities in the shaded
area out of the current tour and connect the remaining (or surviving) cities to a shorter round
trip. We say, “the cities which are disintegrated by the ruin move are not any longer served
by the traveling salesman.” In the final step, we recreate this partial solution after its ruin
to a full TSP solution again. That’s the harder part of the algorithm. There are many ways
to recreate the ruined part of the solution, such that this is obviously an important point to
be discussed in this paper.

Now we have a first imagination of how the ruin and recreate principle works. If we had
to write a R&R based optimization routine we have to think about the kind and size of
the disintegration steps and to argue about how to recreate ruined parts of the solution. We
can overlay a decision rule whether we should accept the rebuilt structure or rather keep
the original one. We could only accept better solutions (“Greedy Acceptance”) or proceed
according to Simulated Annealing [9–11], Threshold Accepting [3], or Great Deluge [4]
methods.

In the next section, we discuss R&R in more detail, however, in general. We present tables
which show results of R&R kind optimization for vehicle routing giving overwhelming evi-
dence for the power of the R&R principle. After that, we proceed with a very short overview
of possible solution change acceptance rules to be used in connection to R&R changes. Then
we turn to the discussion of the vehicle routing problem, the network optimization problem,
and the detailed TSP studies.

II. RUIN AND RECREATE

A. Strategy

The ruin and recreatemethod proposes using the well-known concepts of Simulated
Annealing [9, 10] or Threshold Accepting [3] with bold, large moves instead of smaller
ones. For “simple structured” problems like the Traveling Salesman Problem there is no
real need to use large moves, because algorithms usually deliver near-to-optimum solutions
with very small moves already. Dealing with complex problems, however, we encountered
in our research team severe difficulties using these classical algorithms. If we considered
wide area networks, or very complex vehicle routing tasks, we faced troubles.

• Complex problems often can be seen as “discontinuous”: If we walk one step from a
solution to a neighbor solution, the heights or qualities of these solutions can be dramatically
different, i.e., the landscapes in these problem areas can be very “uneven.”
• Solutions of complex problems often have to meet many constraints, and it is often

even hard to get just admissible solutions. Neighbor solutions of complex schedules, for
instance, are usually inadmissible solutions, and it may be very hard to walk in such a com-
plex landscape from one admissible solution to another neighbored admissible solution.
Many forms of the classical algorithms try to avoid the “admissibility problem” by model-
ing artificial penalty functions, but they typically can get stuck in “slightly inadmissible”
solutions which might not be allowed at all.

Throughout this paper, we will “think” in a new paradigm:ruin and recreate. We ruin a quite
large fraction of the solution and try to restore the solution as best as we can. Hopefully,
the new solution is better than the previous one.

The R&R approach will show an important advantage in this paper: If we have disinte-
grated a large part of the previous solution we have a lot of freedom to create a new one.
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We can reasonably hope that, in this large space of solutions, it is possible to find again an
admissiblesolution. Hopefully we get “discontinuous” problems (problems with very com-
plex objective functions, problems where the solutions have to meet many side conditions)
which are more tractable using special large moves.

We demonstrate the power of the new paradigm by numerical results for the vehicle
routing problem with time windows. We chose this problem area because we felt that this
problem is the “easiest of the complex” problems. It is hard enough to recognize that the
classical algorithms may be not really suited here anymore. It is “easy” enough to find
some published problem instances which are already extensively studied in the literature.
We took more than 50 problem instances from the library of Solomon [12] and tested our
R&R implementation on them.

Tables II to V present our complete numerical results on the Solomon library. In most
cases, our R&R implementation gave solutions at least as good as the currently published
record. In many cases, we could achieve better and much better results. We highlight
here four rather complex examples out of the Solomon library. Figure 2 shows our best
R&R solutions for the problems R107, R202, RC105, and RC206. Here, we could achieve
significant improvements: instance R107, 1119.93 (down from 1159.86); instance R202,
1195.30 (down from 1530.49); instance RC105, 1633.72 (down from 1733.56); instance
RC206, 1152.03 (down from 1212.64). Now, the final results are clear. Before we can come
to the main part of the paper, where we explain “how it really works,” we add a remark
from the practical point of view.

B. Remarks for Applications

Throughout this paper we will study R&R algorithms which build oneadmissiblesolution
after each other. We don’t use artificial constructions like penalty terms in the objective
function at all. This property of the R&R principle has quite significant implications for,
say, commercial vehicle routing systems. At every time during running a R&R optimization
you have a fully admissible solution available. This is in contrary to many vehicle routing
implementations where you often achieve only solutions with small violations of the given
restrictions which you have to resolve in practice by neglect, by tolerance, by wiping them
out by hand, by brute force—take a full additional truck for a small packet—or by calling
a customer for a more suitable time window.

III. CLASSICAL IMPROVEMENT HEURISTICS

A. Simulated Annealing and Its Relatives

Simulated Annealing [9–11], Threshold Accepting [3], the Great Deluge Algorithm
[4, 5], and related Monte Carlo-type optimization algorithms apply ideas of statistical
physics and applied mathematics to find near-to-optimum solutions for combinatorial op-
timization problems. These are all iterative improvement algorithms. They start with an
initial configuration and proceed by small exchanges in the actual or current solution to get
a tentative new solution. The tentative new solution is evaluated, i.e., its objective function,
e.g., its total cost, is computed. The algorithmic decision rule is applied. It is decided if the
tentative new solution is kept as the current solution; in case of acceptance the new solution
is taken as the new current solution. Of course, we can use all these acceptance strategies
within a R&R optimization. Usually, optimization algorithms work with very small or very
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FIG. 5. Left, 1-hop NOP optimum with total length 82; right, 3-hop NOP optimum with total length 55.

FIG. 6. Topologies of solutions for systemsN15 (left) andN45 (right). Computing centersC are colored in
grey. Circles denote locations with switching facility; squares denote locations without switching facility. Trunk
bandwidths are 64 Kbps (cyan), 128 Kbps (gold), and 2 Mbps (magenta). Total costs are 11,437 units for system
N15and 25,304 units for systemN45, corresponding to a synergy of 26.3%.
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local changes in a current solution. In this paper we’ll also use these type of acceptance
rules, however, with considerable changes “made by meteorites.”

1. Decision rules. The different algorithms work with this same structure, but they use
different decision rules for acceptance/rejection. In a Random Walk (RW)everynew solution
is accepted. The Greedy Acceptance (GRE) accepts every solution which isbetterthan the
current solution. Simulated Annealing (SA) procedures accept every better solution and,
with a certain probability, also solutions being worse than the current solution. Threshold
Accepting (TA) [3] accepts every solution which isnot much worsethan the current solution,
where “not much” is defined by a threshold. The Great Deluge Algorithm (GDA) [4, 5]
rejects every solution below a required quality level (the “waterline”). This principle is
related to a Darwinian approach. Instead of “only the fittest will survive” the deluge principal
works with “only the worst will die.”

2. Mutations. Of course, the definition of an exchange in a current solution depends on
the optimization problem. Let us look, for instance, at the Traveling Salesman Problem. In
order to modify the current solution to get a new tentative chosen solution, different types
of local search mutations are commonly applied. Anexchangeexchanges two nodes in the
tour. TheLin-2-optcuts two connections in the tour and reconstructs a new tour by insertion
of two new connections, which can be shown to provide better results [13]. Anode insertion
move(NIM, or Lin-2.5-opt [14]) removes a node from the tour and reinserts it at another
position. Moreover,Lin-3-opt, Lin-4-opt, and Lin-5-opt[15, 16] are sometimes applied,
cutting three, four, and five connections and choosing one of 4, 25, and 208 possibilities to
recreate the new tour, respectively.

B. Set Based Algorithms

Simulated annealing and related techniques have in common that a new configuration
is generated based on the actual one. No information about former configurations is used.
Genetic algorithms and evolution strategies both use a large set of configurations as individua
of a population. Tabu Search saves information about former configurations in its Tabu List
and therefore also depends on a set of configurations. Searching for Backbones reduces the
complexity of a problem by eliminating parts which are supposed to be already optimally
solved.

1. Genetic algorithms and evolution strategies.Genetic algorithms mostly use different
kinds of crossover operators generating children from parent configurations, while evolution
strategies concentrate on mutations altering a member of the population [17]. With both
techniques new configurations are produced; various implementations of these algorithms
only differ in the type of the used mutations and in the choice which configurations are
allowed to reproduce or to mix with each other or forced to commit suicide.

2. Tabu Search. Tabu Search [18] is a memory based search strategy to guide the system
being optimized away from parts of the solution space which were already explored. This
can be achieved either by forbidding solutions already visited or structures some former
solutions had in common, which are stored in a Tabu List. This list is updated after each
mutation according to some proposed rules, which have to guarantee that the optimization
run never reaches a solution again which was already visited before, that the Tabu List size
does not diverge, and that a good solution can be achieved.



146 SCHRIMPF ET AL.

3. Searching for Backbones.Searching for Backbones [6] compares results of inde-
pendent optimization runs for equal parts. These parts are supposed to be optimal, i.e.,
to be parts of the optimum solution. This information is considered in the next series of
optimization runs in which these parts remain unchanged. The new solutions are supposed
to be better than the previous ones because the optimization could concentrate on parts
which are more difficult to solve optimally. This algorithm is repeated iteratively until all
optimization runs produce the same solution.

IV. R&R FOR VEHICLE ROUTING

A. Introduction

We turn to the optimization of vehicle routing. We only consider problems where afleet of
vehiclesstarts from acentral depot. All the vehicles have a givenmaximum capacity. They
serve aset of customerswith known demands. The solution of the VRP (vehicle routing
problem) consists of a minimum cost set of routes of the vehicles satisfying the following
conditions: Each vehicle starts and ends its route at the central depot. Each customer is
served exactly once. The sum of the demands of all customers served by a single vehicle
does not exceed its capacity. The cost of a set of routes for the VRP is the sum of the length
of all routes. Each customer may add atime windowor time intervalrestriction to the
problem, that is, for every customer there is an earliest and a latest time where the vehicle
is allowed to serve the customer. If such restrictions are imposed, we speak of the VRPTW
(vehicle routing problem with time windows).

In the literature there is a well known collection of 56 VRPTW instances from Solomon
[12] which is used by many researchers for evaluation of their VRPTW solving systems.
These problems can be classified into 3 groups, with distinct characteristics of the distri-
bution of the customer locations: random (R), clustered (C), and a mixture of both (RC).
Furthermore, each of these groups can be split into problems with low vehicle capacity
(type 1) or high vehicle capacity (type 2). One therefore generally speaks of six problem
sets, namely R1, C1, RC1, R2, C2, and RC2. Members of a single set vary both in the
distribution of the time windows and in the demands of the single customers (see Table I).

All problems consist of 100 customer locations and one depot. Both the distances and
the travel times between the customers are given by the corresponding euclidean distances.
Therefore, this library incorporates many distinguishing features of vehicle routing with

TABLE I

Classification of the VRP-Parts and Service Times of Solomon’s Library

Set Coord. Demand Maximum vehicle capacity Service time

R1 a A 200 10
C1 b B 200 90
RC1 d C 200 10
R2 a A 1000 10
C2 c B 700 90
RC2 d C 1000 10

Note.The a–d and A–C are 101/100-dimensional vectors representing the coordinates (a–d) and
demands (A–C) of the customers.
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time windows: fleet size, vehicle capacity, spatial and temporal customer distribution, time
window density, time window width, and customer service times. The objective of the
problem is to service all customers while first minimizing the number of vehicles and
second minimizing the travel distance.

Results in the literature are not completely comparable. While some authors used eu-
clidean distances, others truncated the distances to one decimal place. The reason for the
truncation is that some exact algorithms for solving VRPTW are integer based, like dynamic
programming. As in the recent publications [19, 20] we used real, double-precision dis-
tances. Desrocherset al.[21] used a LP relaxation of the set partitioning formulation of the
problem and solved it by column generation. The LP solutions obtained are excellent lower
bounds. With a branch-and-bound algorithm they solved 7 out of the 56 problems exactly.
Potvinet al.[22] used Genetic Search to solve the VRPTW. The basic principle they used is
the creation of a methodology for merging two vehicle routing solutions into a single solution
that is likely to be feasible with respect to the time window constraints. Thangiahet al.[19]
applied a technique where customers are moved between routes defining neighborhood solu-
tions. This neighborhood is searched with Simulated Annealing and Tabu Search. The initial
solution is obtained using a push-forward insertion heuristic and a genetic algorithm based
sectioning heuristic. They solved 56+ 4 problems from the literature (Subsection IV.A,
4 other problems), and for 40 of these they obtained new optimum solutions. For 11 out of
the 20 remaining problems they obtained solutions equal to those best known. Later, Rochat
et al. [20] adopted their probabilistic technique to diversify, intensify, and parallelize the
local search to the VRP and VRPTW. They used a simple first-level tabu search as the basic
optimization technique and were able to significantly improve its results by their method.
In using a post-optimization procedure they improved nearly 40 of the 56 instances. This
shows that their method has in most cases significant advantages over the previous methods.

B. Ruin

In the first section, we introduced the concept of “ruin” with a discussion of the Traveling
Salesman Problem: We removed all those cities from a round trip that were located in the
radial deletion area. Let’s use a different wording for “a city being deleted from the tour.”
We would like to say, “a city is not served anymore by the traveling salesman.” After the
ruin the salesman is serving only all the cities that remain after the ruin step. If we deal with
vehicle routing, we shall disintegrate a solution by removing destinations or customers or
packets to be delivered. We say that these customer destinations are not serviced anymore
after a ruin. When we discuss the recreation step, we say that these customers are trying
to be serviced again, this time by the most appropriate vehicle. There are many ways to
ruin a solution. Below we give some exact definitions of particular ruin strategies used in
our implementation. Of course, you may feel free to invent new ones. Let’s browse briefly
through some obvious ideas.

For the TSP, you could ruin according to the first section. We call this procedureradial
ruin. We can remove cities from the service by flipping coins: every city is removed with a
certain probability. We can remove a shorter or longer string of cities within a round trip.
For the vehicle routing problems, there are many more promising fashions to disintegrate
solutions. Since every vehicle rides along a round trip, any TSP destruction method can
be used. But we have a broader spectrum of possibilities. Of course, we can remove all
customers inside a disk in a plane. This is a type of “space deletion” or “space ruin.” We
could also remove every customer which is serviced in the current solution inside a certain
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time interval: this is a “time deletion.” Furthermore, we could apply “volume deletions”
or “weight deletions” that remove customers receiving packets whose weights or volumes
are in a certain range. All these ruins remove customers who are adjacent in some sense.
For example, many years ago we studied knapsack problems [23] and found already at that
time that packet exchanges are most useful if they are restricted to packets of similar size.
Within the new framework we present here we would say that we have usedvolume ruins
of small size.

Let’s start here to define some kinds of ruins: some packets to be delivered or customers
to be served or cities to be visited are removed from the systemT . They are not served any
longer, or we say, they are put into a bagB of unserved items.Radial ruin: This is the classical
ruin from which the imaginative picture is derived. Select randomly a nodec from the setT
of all N nodes (packets, customers, cities). Select a random numberA with A≤ [F ·N ],
F being a fraction, a number between 0 and 1. Removec and itsA− 1 nearest neighbors
from T and put them into the bagB. The “nearest neighbors” are defined according to a
certain metric. For our vehicle routing instances we use the euclidean distance.Random
ruin: Select a random numberA≤ [F ·N ], 0≤F ≤ 1. RemoveA randomly selected nodes
from T and put them intoB. Note that random ruin is a global strategy whereas radial ruin
is a more local one.Sequential ruin: RemoveA≤ [F ·N ] succeeding nodes from a single,
randomly selected round trip.

C. Recreate

Suppose we have ruined a solution. This means that we have a set of customers which are
no longer serviced (by a salesman or by a vehicle). The recreation of the solution means the
reinsertion of these customers into the system. Ideally, we could try to invent an algorithm
such that the solution is recreated exactly optimally. On the other hand, we could try to take
every customer, one after another, and insert them into the system in a more or less clever
way. It can be seen that there is a whole universe of methods to recreate the system. In this
paper, we want to present theprincipleof R&R, the pure idea. We have restricted ourselves
to studying the most obvious recreation of all:best insertion. Best insertion means that we
add all customers out of service successively in the best possible way to the system. Do not
violate any restriction (e.g., time window constraints), such that every recreation ends up
in a fully admissible solution. Let us emphasize another point: We used only this rule of
best insertion, and we could achieve record results by exclusively using this raw principle.
Of course, it is possible to study more elaborate, more sophisticated hybrid algorithms to
achieve better results. However, this is not the intention of the present paper. We just want
to state the power of the most simple form of R&R, which is the following: In a partially
disintegrated routing solution we have a certain number of customers (or cities) put into
the bag. Now, we take these customers in a random order out of the bag and perform best
insertion: The customer asks every vehicle if and at which position it is possible to serve him
on its tour and what the additional costs would be. The minimum cost insertion is chosen.
It may not be possible at all to insert a customer into the solution due to the capacity or time
window constraints. In this case, an additional vehicle is inserted into the system.

D. Overall Optimization Procedure

Throughout this paper, we exclusively use radial R&R (R&Rrad), random R&R (R&Rran),
and sequential R&R (R&Rseq), which connect the chosen ruin mode with the best insertion
technique. The scheme should now be clear:
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1. Start with an initial configuration.
2. Choose a ruin mode.
3. Choose a numberA≤ [F ·N ] of nodes to be removed.
4. Ruin.
5. Recreate.
6. Decide if you accept the new solution according to a decision rule (Simulated Anneal-

ing. Threshold Accepting, etc.). If you accept, proceed with (2), using the new solution,
else restart with (2) using the current (old) solution.

E. Details of the Implementation

A route of a vehicle is represented by a sequence of customersC1,C2, . . . ,Ck. For a given
routeC1 andCk are pseudo-customers representing the starting and ending at the central
depot. The only point left unspecified in the Ruins and Recreates is the representation
of time. We choose the representation as time intervals at each customer (including the
pseudo-customers). This has the advantage that all possible realizations in time of a given
customer sequence in a route are represented simultaneously. LetCfirst

i andClast
i be the first

and last time the customerCi allows the start of the service andCjob
i be its service time

(the service time is 0 for the pseudo-customers). NowCearly
i andClate

i are always updated
to represent the first and last time the service may start atCi inside the actual route. A time
window conflict exists at customerCi if and only if Cearly

i >Clate
i . The travel time between

two customersCi andCj is denoted byd(Ci ,Cj ). If customerCi is inserted newly into the
route it gets initialized byCearly

i =Cfirst
i andClate

i =Clast
i . Then theearlyandlateentries are

updated similarly, here demonstrated for theearlyentries,

for i := 2 to k do Cearly
i = max

{
Cearly

i ,Cearly
i−1 + Cjob

i−1+ d(Ci−1,Ci )
}
.

After removal of a customer (due to an R&R ruin) resulting in the routeC1,C2, . . . ,Ck the
early part of the update is done by

for i := 2 to k do Cearly
i = max

{
Cfirst

i ,Cearly
i−1 + Cjob

i−1+ d(Ci−1,Ci )
}
.

The late part of the update is done similarly.
For problems where it is not easy to achieve the desired numbernT of tours in a solution as

known optimum/best from the literature we used the following modification of the normal
approach: For each vehicle used in a configuration exceedingnT we charged a constant
amount of 50 units and scaled its costs by a factor of 5. For the configurations with at most
nT vehicles used this does not change anything, and for others this will lead the search into
the right direction.

All runs were performed using Threshhold Accepting as the decision rule. The initial
thresholdT0 was set to be half of the standard deviation of the objective function during a
random walk. We used an exponential cooling schedule for the thresholdT of the form

T = T0 · exp(−ln 2 · x/α), (4.1)

where the half-lifeαwas set to 0.1. The schedule variablex was increased from 0 to 1 during
the optimization run. We applied a 1 : 1 mixture of R&Rradand R&R random, usingF = 0.3
andF = 0.5, respectively. The single computations were performed with 40,000 mutations,
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consuming approximately 30 minutes of CPU time on a RS 6000 workstation, model 43P,
233 MHz. The neglect of time windows increased the computation speed approximately by
a factor of three.

An important point to mention is the applicability of the R&R approach to very large
vehicle routing problems. This is due to its inherent parallelizability and its ability to
achieve comparable results even after localizing some computations. Most time consuming
is the calculation of the cost of acceptance for a customer by a vehicle, especially for
the recreate steps. The recreate step consumes about 90% of the whole computing time.
These calculations can easily be parallelized on the vehicle basis, since the single vehicle
calculations are independent. This is even valid for the single tests on different potential
positions inside a vehicle tour.

F. Results

The work on VRPTW can be split into two groups: work on exact algorithms or heuristics
and work on meta heuristics. The results prior to Rochatet al.[20] fall into the first category;
the work of Rochatet al.itself falls into the second one. R&R is a strategy to solve complex
combinatorial problems. The application of R&R to VRPTW is a heuristic and therefore
falls into the first category.

We compare our results to the work prior to Rochatet al. [20] in Tables IV (left) and V
(left) and to the work of Rochatet al. [20] in Tables IV (right) and V (right). In Tables IV
(left) and V (left) there are 8 cases where our results are worse, 12 cases where our results
are equal, and 36 cases where our solutions are better. There are only 3 cases where we
missed the minimum number of tours, but 5 where we are one tour better than the best
known result. Comparison of the results with the work of Rochatet al. shows that in 24
cases we receive the same results and have better results in 31 cases. Only 1 problem was
solved better by Rochatet al.With two exceptions, where our solutions are one tour better,
we always received solutions with the same number of tours. The large number of equal
results may indicate that many of these 24 problems cannot be improved further.

The problems from groups C1 and C2 are solved by most authors and us with nearly the
same quality, and for 5 out of the 9 problems from C1 optimally. Thus we consider these
problem sets as “easy.” For each of the other groups we present the best improvement for a
problem we found in Table II.

The main aim of an optimization algorithm can either be to achieve a new best solution
or to be used in practice. In the latter case a small variance in the (good) results is even more
important than the average quality or the best solution that can be found by an algorithm.
Table III shows the statistics over 50 runs of the 4 problems mentioned above. The value of
ρ is the probability of the event, that a solution consists of the best known number of tours. It
differs widely for these problems. For the first 3 problems even the worst solutions found are
better than the previous optimum solution. For problem RC206 all runs resulted in solutions
with the best known number of tours used. Here, the worst solution is worse than the best
known, but even here the mean value of these solutions is better than the actual best known.

V. R&R FOR NETWORK OPTIMIZATION

A. Problem Definition

In this section we introduce the hard problem of network optimization (NOP). Attempting
to get reasonably good solutions for customers, we realized that the simple annealing
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TABLE II

Tour Sequences for Instances R107, R202, RC105, and RC206

Instance nC Sequence l l tot

R107 9 28-50-76-40-53-68-29-24-80 115.86 119
9 33-81-65-71-9-66-20-51-1 128.77 142
9 48-47-36-64-49-19-82-18-89 126.00 167
9 12-54-39-23-67-55-4-25-26 132.61 166

12 2-57-43-15-41-22-75-56-74-72-73-21 103.08 129
9 27-69-30-79-78-34-35-3-77 111.35 118

11 60-83-45-46-8-84-5-17-61-85-93 113.47 151
11 52-7-11-62-88-31-10-63-90-32-70 116.34 138
12 95-97-42-14-44-38-86-16-91-100-37-98 105.74 181
9 94-96-92-59-99-6-87-13-58 66.70 147

R202 37 96-59-92-98-85-91-14-42-2-21-72-39-23-15-38-44-
16-61-99-18-8-84-86-5-6-94-95-97-43-74-13-37-
100-93-17-60-89 392.26 560

29 50-33-65-34-29-3-28-27-69-76-67-73-40-53-87-57-
41-22-75-56-4-54-55-25-24-80-12-26-58 354.70 376

34 83-45-48-47-36-63-64-11-19-62-88-30-71-78-79-81-9-
51-90-49-46-82-7-10-20-32-66-35-68-77-1-70-31-52 448.34 522

RC105 8 72-71-81-41-54-96-94-93 127.54 120
8 92-95-62-67-84-51-85-89 141.21 96
8 82-12-11-87-59-97-75-58 137.55 172
5 90-53-66-56-91 74.54 59
8 65-83-64-99-52-86-57-74 116.71 124
7 2-45-5-7-79-55-68 108.97 147
9 98-14-47-15-16-9-10-13-17 121.02 149
9 42-61-8-6-46-4-3-1-100 144.53 132
7 63-23-19-22-49-20-77 160.78 143
5 69-88-78-73-60 81.70 95
9 39-36-44-38-40-37-35-43-70 132.62 183

10 31-29-27-30-28-26-32-34-50-80 134.62 183
7 33-76-18-48-21-25-24 151.62 111

RC206 33 69-98-2-45-5-44-42-39-38-36-40-41-61-88-53-78-73-
79-7-6-8-46-4-3-1-43-35-37-54-96-93-91-80 334.39 592

34 65-83-82-11-14-12-47-15-16-75-59-52-99-64-84-67-
71-94-81-90-66-56-50-34-32-26-89-20-24-48-25-77-58-74 475.23 554

33 72-92-95-62-31-29-27-28-30-33-63-85-51-76-18-21-23-
19-49-22-57-86-87-97-9-10-13-17-60-55-100-70-68 342.42 578

Note.For the single vehicle tours the number of customers,nC, its lengthl , and the total loading
due to the serviced customersl tot are given.

and threshold accepting methods were not satisfactory or failed, if you prefer this harder
formulation. The landscape of this harder problem seems to be extremely “discontinuous.”
At this point, frustrated with the results of classical algorithms, we had the final ruin and
recreate idea. We state the problem. In a wide area network (WAN) you have the task of
transmitting certain amounts of information over an undirected graph,the network. Different
nodes are connected by so-calledlinks. Each link consists of zero or more communication
lines, so-calledtrunks, each having abandwidth, which is measured in bits per second (bps),
kilobits per second (Kbps), or megabits per second (Mbps). If you want to communicate



TABLE III

Distribution of the Final Lengths, Calculated from 25 R&R, for Problems

R107, R202, RC105, and RC206

Best known R&R
Problem
instance nT lmin ρ lmin 〈l 〉 lmax σl

R107 10 1159.86 0.24 1119.93 1125.84 1136.05 5.33
R202 3 1530.49 0.64 1195.30 1243.43 1316.48 30.73
RC105 13 1733.56 0.12 1633.72 1646.77 1663.03 12.18
RC206 3 1212.64 1.00 1152.03 1198.54 1256.62 29.84

Note.ρ is the probability of a R&R solution to consist ofnT tours,l is the best known
length of the problem instance, andlmin, 〈l 〉, lmax, andσl are the minimum, mean, maximum
final length, and the standard deviation of our runs consisting ofnT tours.

TABLE IV

Comparison of the R&R Results with Literature Data for Problem Sets R1, C1, and RC1

Best solution previous Best R&R Best solution Best R&R
to Rochatet al. solution by Rochatet al. solution

Problem Problem
instance nT l nT l instance nT l nT l

R101 18 1607.7∗ [21] 19 1645.7∗ R101 19 1650.80 19 1650.80
R102 17 1434.0∗ [21] 17 1481.2∗ R102 17 1486.12 17 1486.12
R103 13 1207 [19] 13 1296.19 R103 14 1213.62 131296.19
R104 10 1048 [19] 10 981.23 R104 10 982.01 10 981.23
R105 14 1420.94 [22] 141377.11 R105 14 1377.11 14 1377.11
R106 12 1350 [19] 12 1252.03 R106 12 1252.03 12 1252.03
R107 11 1146 [19] 10 1119.93 R107 10 1159.86 101119.93
R108 10 989 [19] 9 966.40 R108 9 980.95 9 966.40
R109 12 1205 [22] 11 1210.66 R109 11 1235.68 111210.66
R110 11 1105 [19] 10 1121.46 R110 10 1080.36 10 1121.46
R111 10 1151 [19] 10 1122.76 R111 10 1129.88 101122.76
R112 10 992 [19] 10 953.63 R112 10 953.63 10 953.63

C101 10 827.3∗ [21] 10 827.3∗ C101 10 828.94 10 828.94
C102 10 827.3∗ [21] 10 827.3∗ C102 10 828.94 10 828.94
C103 10 835 [19] 10 828.06 C103 10 828.06 10 828.06
C104 10 840 [19] 10 824.78 C104 10 824.78 10 824.78
C105 10 828.94 [22] 10 828.94 C105 10 828.94 10 828.94
C106 10 827.3∗ [21] 10 827.3∗ C106 10 828.94 10 828.94
C107 10 827.3∗ [21] 10 827.3∗ C107 10 828.94 10 828.94
C108 10 827.3∗ [21] 10 827.3∗ C108 10 828.94 10 828.94
C109 10 828.94 [22] 10 828.94 C109 10 828.94 10 828.94

RC101 14 1669 [19] 15 1623.58 RC101 15 1623.58 15 1623.58
RC102 13 1557 [19] 131477.54 RC102 13 1477.54 13 1477.54
RC103 11 1110 [19] 11 1261.67 RC103 11 1262.02 111261.67
RC104 10 1204.07 [22] 101135.52 RC104 10 1135.83 101135.52
RC105 14 1602 [19] 131633.72 RC105 13 1733.56 131633.72
RC106 12 1485.67 [22] 121384.26 RC106 12 1384.92 121384.26
RC107 11 1274.71 [22] 111230.54 RC107 11 1230.95 111230.54
RC108 10 1281 [19] 101147.26 RC108 10 1170.70 101147.26

Note.Left, comparison to work prior to Rochatet al.: right, comparison to Rochatet al.Results, where R&R
gives better results than known, appear in boldface. Lengths are calculated by euclidean distances. Exceptions
with truncation to one decimal place are marked by an asterisk.
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TABLE V

Comparison of the R&R Results with Literature Data for Problem Sets R2, C2, and RC2

Best solution previous Best R&R Best solution by Best R&R
to Rochatet al. solution Rochatet al. solution

Problem Problem
instance nT l nT l instance nT l nT l

R201 4 1354 [19] 4 1252.37 R201 4 1281.58 4 1265.74
R202 3 1530.49 [22] 3 1195.30 R202 4 1088.07 3 1195.30
R203 3 1126 [19] 3 947.63 R203 3 948.74 3 947.63
R204 2 914 [24] 2 848.91 R204 2 869.29 2 848.91
R205 3 1128 [19] 3 994.43 R205 3 1063.24 3 1053.37
R206 3 833 [19] 3 906.14 R206 3 912.97 3906.14
R207 3 904 [19] 3 811.51 R207 3 814.78 3 811.51
R208 2 759.21 [22] 2 726.82 R208 2 738.60 2 726.82
R209 2 855 [19] 3 915.16 R209 3 944.64 3915.16
R210 3 1052 [19] 3 939.37 R210 3 967.50 3 963.67
R211 3 816 [19] 2 904.32 R211 2 949.50 2 904.32

C201 3 591.56 [22] 3 591.56 C201 3 591.56 3 591.56
C202 3 591.56 [22] 3 591.56 C202 3 591.56 3 591.56
C203 3 591.55 [22] 3 591.17 C203 3 591.17 3 591.17
C204 3 590.60 [22] 3 590.60 C204 3 590.60 3 590.60
C205 3 588.88 [22] 3 588.88 C205 3 588.88 3 588.88
C206 3 588.49 [22] 3 588.49 C206 3 588.49 3 588.49
C207 3 588.32 [22] 3 588.29 C207 3 588.29 3 588.29
C208 3 588.49 [22] 3 588.32 C208 3 588.32 3 588.32

RC201 4 1249 [19] 4 1415.33 RC201 4 1438.89 41415.33
RC202 4 1221 [19] 4 1162.80 RC202 4 1165.57 4 1162.80
RC203 3 1203 [19] 3 1051.82 RC203 3 1079.57 3 1051.82
RC204 3 897 [19] 3 798.46 RC204 3 806.75 3 798.46
RC205 4 1389 [19] 4 1302.02 RC205 4 1333.71 4 1302.02
RC206 3 1213 [19] 3 1152.03 RC206 3 1212.64 3 1152.03
RC207 3 1181 [19] 3 1068.86 RC207 3 1085.61 3 1068.86
RC208 3 919 [19] 3 829.69 RC208 3 833.97 3 829.69

Note.Left, comparison to work prior to Rochatet al.; right, comparison to Rochatet al.Results, where R&R
gives better results than known, appear in boldface. Lengths are calculated by euclidean distances.

from pointa to pointb in a network, you can subscribe to a trunk with a sufficient bandwidth.
Your ISDN channel, for instance, is such a trunk and has 64 Kbps. Your provider may offer
trunks with different bandwidths. In Germany, for instance, you can get 9.6, 19.2, 64,
128 Kbps trunks, or even 2 and 34 Mbps trunks. Depending on the length of the trunk and
of its bandwidth you have to pay a fee per time unit, typically per month. The prices are
non-linear in length and bandwidth. Usually, there is a basic fee for any communication;
shorter trunks are much more expensive per mile than longer ones where you get a discount
in length, etc. Since there are many recently founded new telecommunication providers,
there is no hope any longer for simple price structures.

Suppose you have an enterprise with six offices in a country as shown in Fig. 3. Fromc to
b, fromd toc, from f tod, from f toa, and frometoa you need a communication bandwidth
of 10 Mbps to satisfy your communication demands. The left-hand picture of Fig. 3 is then
called yourdemand graph. You could now order the trunks exactly corresponding to this
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demand graph to build yourcommunication network. That solves your task immediately.
However, it’s easy to argue that there might be cheaper ways to link your offices. See the
right-hand picture in Fig. 3. If we order these trunks from the telecom, the total trunk length
is reduced from 885 units in the straightforward solution to 562 units. If we communicate
from c to b in this new network, we will say our messages will berouted over f . We
say, fromc to b over f , our message is routed with twohop counts. Location f has to be
provided with switching technology.

Network optimization is the mathematical problem to find the cheapest possible com-
munication network for your demand graph. In the following we state the problem a bit
more precisely and state some necessary conditions on solutions. It is convenient to state
the demands as a matrix rather than to visualize them in a graph. For instance, the example
problem in Fig. 3 has the demand matrix

D =



· · · · · ·
0 · · · · ·
0 10 · · · ·
0 0 10 · · ·
10 0 0 0 · ·
10 0 0 10 0 ·


.

The maximum hop counts may be restricted for every single demand, because, for example,
telephone paths are routed better over less or equal than two hop counts because of possible
echo effects. This is due to the delay caused by intermediate nodes. In such a case the hop
count matrixH may look like

H =



· · · · · ·
0 · · · · ·
0 2 · · · ·
0 0 2 · · ·
2 0 0 0 · ·
2 0 0 2 0 ·


.

For every site of the network, we know if it may possess switching functionality or not. The
vectorS= (1, 1, 1, 1, 1, 1) indicates for our small example that every site has a switching
functionality (no switching functionality is denoted by 0).

For a network optimization problem we have to know further the vectorP of coordinates
of the geographical locations of the sites and the set of possible trunk bandwidths. In our
example, the positions are given byP= ((160, 60), (0, 50), (220, 210), (70, 0), (10, 180),
(80, 80)), and only trunks with a bandwidth of 34 Mbps may be used. The price or cost of
a single 34-Mbps trunk is equal to its length, e.g., the euclidean distance between a pair of
sites. In practice, the price for a trunk with a specified bandwidth depends on the distance
in a more complex form.

Figure 3 (right) shows the optimum network for this problem. Topologically it consists
of a so-calledstarof five links, each link containing a single 34-Mbps trunk. The numbers
at the links in Fig. 3 denote the actual bandwidth needed. The routing of the demands in that
network is graphically presented by paths of different colors. The routing matrix is given
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by

R=



· · · · · ·
ε · · · · ·
ε c f b · · · ·
ε ε d f c · · ·

ef a ε ε ε · ·
f a ε ε f d ε ·


,

with ε denoting the empty path. By looking at a simple example we have defined thenetwork
optimizationproblem. In summary, its parameters are:

The Network Optimization Problem (NOP).
Input:

• a number of sites and their geographical coordinates
• switching facilities at the sites
• demand matrix with demand entries from site to site
• hop count matrix with hop count restrictions for each demand
• a set of trunk types (bandwidths) that can be ordered
• pricing table depending on bandwidth and distance

Output:

• graph of links consisting of certain trunks that meets all demands and restrictions
• routing matrix with route entries for every demand

Objective function: minimum price for an admissible network

That’s the mathematical problem. In practice, our customers don’t like very “abstract look-
ing” or “mathematical looking” solutions which don’t look “intuitive.” So we have to rear-
range the solutions a little bit. In addition, many alternatives are compared with different
switching facilities to save network equipment.

Another serious property which is very often requested in practice isredundancy. Treating
redundancy in network optimization is the consideration of possible failures of network
components (trunks and machines). One would like to be able to run networks even in
case of such failures. Therefore, many networks are built with one of the two following
properties:

• for every demand there are defined two alternative routings which do not have any
link in common
• for every demand there are defined two alternative routings which do not have any

knot in common.

Networks with these features are calledlink redundantor knot redundant, respectively, if
the following conditions are satisfied: If a link or knot fails and if in this case all affected
routings of demands are changed to their alternative routing, then this new routing is an
admissible solution for the original network problem. Note that knot redundancy implies link
redundancy, so that knot redundancy is the harder restriction. In normal networks we have a
trunk availability of more than 99%. Failure is therefore a rare case in terms of time (not in
subjective anger, of course). In these few intermediate failure times it is certainly tolerable
to use alternative routings with larger hop counts. For redundancy optimized networks the
problem has, for this reason, a hop count matrixHord andHalt for the ordinary case and for
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the case of single failure, respectively. In our mini-example we use

Hord = H =



· · · · · ·
0 · · · · ·
0 2 · · · ·
0 0 2 · · ·
2 0 0 0 · ·
2 0 0 2 0 ·


, Halt =



· · · · · ·
0 · · · · ·
0 3 · · · ·
0 0 3 · · ·
3 0 0 0 · ·
3 0 0 3 0 ·


.

Current network optimization tools approach the problem in two steps. First, a good basic
network is designed. Then all the links necessary to achieve redundancy are added in a
clever way. Figure 4 (left) shows the best solution we obtained for this kind of approach.
To the “star-like” solution for the basic network we added redundancy ending with a total
length of 1048. When we optimize the network justall-in-one, in a one-step approach we
can achieve a much better solution of total length 861 for this small example, which means
a 21.7% improvement. The routing of Fig. 4 (right) is given by the matrices

Ract =



· · · · · ·
ε · · · · ·
ε c− e− b · · · ·
ε ε d − a− c · · ·

e− c− a ε ε ε · ·
f − a ε ε f − d ε ·

 ,

and

Rred =



· · · · · ·
ε · · · · ·
ε c− a− d − b · · · ·
ε ε d − b− e− c · · ·

e− b− d − a ε ε ε · ·
f − d − a ε ε f − a− d ε ·


,

with ε denoting an empty path. Dotted lines indicate the redundant routes of the demands.
The numbers at the links give the actual bandwidth used. Note that every demand in our
example is 10 Mbps and look at Fig. 4 (right). Fromd to a, there are now five different
routings, each with a demand of 10 Mbps, over a single 34-Mbps line. This doesn’t seem
admissible at first sight. Let us give a clarifying argument. For example, the yellow routing
and the green routing don’t have a link or an intermediate node in common. Thus, if there
is a single network failure, the dotted yellow and the dotted green line will never be used
simultaneously. If you go carefully through these arguments you see that the solution is in
fact feasible. In addition, you see that the simple mini-network we present here for an intro-
duction already is an intriguing and intricate network optimization problem if redundancy
is considered.

The Network Optimization Problem with Redundancy (NOPR).
Additional Input:

• kind of redundancy (knot or link)
• hop count constraints for alternative routings
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Additional Output:

• routing matrix with failure-case alternative routes for every demand

B. Ruin and Recreate

1. Starting solution. The construction of a feasible solution is easy, because you obvi-
ously always can construct a very expensive solution which satisfies all aforementionend
constraints.

2. Ruin. Ruin means that certain demands are removed from the system. This involves
downsizing the bandwidth of those links that are used by the active and redundant path of
each demand having been removed.

3. Recreate—Collective recreate.Normal best insertion should be clear. A demand
to be inserted in chosen. Its active path is inserted in the cheapest possible way, then its
redundant path is added in a cost-optimal manner. However, for network optimization we
observed a rather frequent difficulty which we have to overcome by a somewhat more
intelligent recreate technique:collective best insert. Let us explain what’s not easy with
single best insertion. Look at Fig. 5 (left), a starting solution of a simple network optimization
problem: Two demands, froma to b, and fromc to e, 10 Mbps each, three hops allowed,
only 34-Mbps trunks available. The coordinate vector isP= ((41, 0), (0, 0), (41, 8), (38,
4), (0, 8), (3, 4)). If you ruin this starting solution by deleting one or both demands you will
always return to the starting solution. Obviously, however, the right-hand network of Fig. 5
is a much better solution. In order to overcome the deficiency of the single best insertion
strategy it is necessary to do further research on more sophisticated recreate techniques.

At present we are quite successfully experimenting with strategies which could be called
“collaborative insertions.” We don’t yet have a simple or clean technique, which could
be nicely communicated here. Let us just give a rough idea how we work for our current
customers in practice. We try to group disintegrate demands which have to connect along
“similar directions” in the plane. In the trivial example of Fig. 5 we would feel that the
demands frome to c and froma to b are, viewed geographically, “in a similar direction.”
We insert such demands again in a better, collaborative way by lowering artifically the
cost of trunks in these directions. This means in the example that we assume that trunks
in the direction froma to b, or, for instance, trunks fromf to d, are offered for a lower
price or even for free. A lower price in a promising direction encourages the algorithms
to choose solutions which look like they are collaborative even though they are computed
independently.

C. Details of the Implementation

How to reinsert the active and redundant path of a demand into the design is being decided
by length-restricted cheapest path algorithms. We obtain the length restriction by the active
and redundant hop count restriction of a demand. The edge costs for the cheapest path graph
algorithm are defined to be the additional costs of transport of the demand’s bandwidth.
Therefore the edge cost determination incorporates the following two problems.

1. Bandwidth calculation. For the NOP, the determination of the bandwidth for a given
link, sufficient for dealing with its actual design bandwidth and the bandwidth of the demand
to be reinserted, is an easy task: just add both values.

The problem becomes more difficult in case of the NOPR as already seen in the discussion
of the bandwidth of linka–d in the previous example. Here aconflict graphis determined
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with vertices for each demand’s redundant path and edges between two vertices, if the
corresponding redundant paths may be needed at the same time due to some network
failure, i.e., the corresponding active paths share a link (or an internal location in case of
knot redundancy).

The task now is to determine groups of isolated vertices, such that the sum of the group’s
maximum demands is minimal. The maximum bandwidth of such a group is sufficient for
the whole group, since by the group’s definition at most one of its bandwidths is needed
due to network failure at the same time. Since in the non-failure case all active demands use
their bandwidth, the sum of a link’s active demands needs to be allocated. Since there is no
interaction of the active paths and the redundant paths over the same link, the bandwidth
B necessary for a linkL with a set of active demandsLact and redundant demandsLred is
given by

B =
∑

Di j ∈Lact

Di j +min

{
k∑

i=1

max{d |d ∈ Ji } | Lred= J1∪̇ . . . ∪̇Jk, Ji conflict free

}
. (5.1)

The problem of determining the partition of the demands above is NP-complete by itself:
if all redundant demands are the same it is the minimum-clique-cover problem on the
complementary graph of the conflict graph. We therefore use afirst fit decreasinglike
heuristic to deal with bandwidth calculation efficiently. Exact algorithms are out of scope
since there are cases with often more than 30 redundant paths over a certain network link
and the calculation must be done very fast.

2. Trunk set cost determination.Typical telecommunication providers have tariffs de-
pending on a mixture of link distance, tariff zones, and bandwidths to be transported. We
used a memory-based tariff database to deal with the efficient answering of questions of the
following type: For a given bandwidthB, a distance between two locations dist and a tariff
zoneZ, what is the cheapest arrangement of trunks satisfying the needs and how much does
it cost? Since these calculations should take only a very small part of computing time (we
want to optimize), we use a hashing approach to guarantee that each call to the database
is calculated the first time only. The actual calculation consists of answering the following
(NP-complete) problem:

Problem. Minimum Weighted Cover

Instance. A set of trunksT ={(v1, c1), . . . , (vk, ck)}, vi , cj ∈ N 0
+, 1≤ i, j ≤ k, each

being a volume/cost pair and a volumeV ∈ N 0
+.

Question. Find a setI ⊆ T with
∑

(v,c)∈I v≥V and
∑

(v,c)∈I c minimal.

Normally the number of different trunks is not small since each different CIR (commited
information rate) of a trunk with a certain bandwidth (for links with service included) gives
different pairs to the above problem.

The actual calculation is done with an efficient branch and bound algorithm, making it
possible to answer, e.g., all 650,000,000 calls to the database during a 12-h optimization
run with a total of 1 minute of CPU time.

D. Real Life Example

In this section we would like to publish a network example for further research. We are
particularly interested in how your algorithms perform on this problem. The exampleN15
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we propose consists of 15 nodes, one of them acting as a “center.” There is no “any-to-any”
communication in this network but only an “any-to-center” communication. This is a very
typical case in reality. Branch offices of insurances or banks communicate with the center
and usually not among each other. ExampleN15 describes such a real life case. In our
optimization service for our customers we are frequently asked what the synergy effects
might be if networks are managed jointly. For example, three banks with centers nearby
(in a large city) are connected to their branch offices in the surrounding region. If they
manage their three networks separately it will cost them some amountx for the sum of the
cost of their networks. Suppose they decide to operate ajoint network. Then, of course, the
resulting network can be designed cheaper than the sum of their original costs. If the joint
network isy% cheaper than the original sum, we say the synergy isy%. We present here
such a synergy problem. FromN15 we constructed two equivalent networks by translating
the original network by a vector in a plane. This way we have two equivalent copies of the
original N15. Consider now the new network of 45 nodes which is generated by threeN15
copies. This new “synergy problem” we callN45 (Fig. 6). The task is to optimizeN15
alone, and then try to compute the best synergy networkN45. What is the resulting synergy?

Below we provide the problem description (see Tables VI–IX).

System N15.
Input:

• 15 locations, 11 locations with switching facilities
• one demand (32-96 Kbps) from each location to the “computing center” (a single

destination)
• knot redundancy for all demands
• maximum hop count of 3 for active and redundant path
• trunk bandwidths of 64 Kbps, 128 Kbps, and 2 Mbps can be ordered
• costs are 1, 2, and 3 units per length unit, respectively

TABLE VI

Parameters of SystemN15and Optimization Results

Node x y S D C rord ralt

1 715 488 1 — — — —
2 200 450 1 32 1 2-1 2-6-10-1
3 771 47 0 32 1 3-1 3-4-1
4 818 214 1 64 1 4-10-1 4-1
5 833 511 1 96 1 5-1 5-14-8-1
6 320 205 1 32 1 6-10-1 6-13-2-1
7 982 401 0 64 1 7-5-1 7-4-1
8 626 872 1 96 1 8-1 8-14-5-1
9 385 613 1 32 1 9–1 9-12-2-1

10 587 265 1 64 1 10-1 10-6-2-1
11 858 789 0 64 1 11-1 11-14-5-1
12 64 494 1 32 1 12-9-1 12-2-1
13 77 68 1 96 1 13-6-10-1 13-2-1
14 746 878 1 64 1 14-1 14-5-1
15 125 260 0 96 1 15-6-10-1 15-2-1

Note.Listed are the coordinatesx andy of the single nodes, the switch facilityS,
its bandwidth need (in Kbps) to the computing centerC, and the optimized routings
rord andralt for the normal case and for the failure case, respectively.
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TABLE VII

The 24 Links Used in the Optimized SystemN15

Link bord balt bt Costs

1-2 32 288 2000 1551
1-3 32 0 64 445
1-4 0 64 64 293
1-5 160 96 2000 363
1-8 96 96 2000 1185
1-9 64 0 64 353
1-10 352 32 2000 774
1-11 64 0 64 334
1-14 64 0 64 392
2-6 0 64 64 273
2-12 0 64 64 143
2-13 0 128 128 804
2-15 0 96 128 410
3-4 0 32 64 174
4-7 0 64 64 249
4-10 64 0 64 237
5-7 64 0 64 186
5-14 0 96 128 756
6-10 224 64 2000 822
6-13 96 32 128 558
6-15 96 0 128 406
8-14 0 96 128 242
9-12 32 32 64 343
11-14 0 64 64 144

Note.Listed for each link is the accumulated bandwidthbord due to the
normal routingsrord, the accumulated bandwidthbalt due to the routings
in case of failureralt, the bandwidthbt of the trunk needed, and its cost.
All bandwidths are given in Kbps.

• distance between two nodes is euclidean (rounded up to integer)
• specification in Table VI

Output:

• graph of links consisting of certain trunks (Table VII)
• routing matrix with route entries for every demand (Table VI)

Best solution: minimum sum of trunk costs found is 11437 units

System N45.
Input:

• 45 locations, 33 locations with switching facilities
• consisting of threeN15subsystems with translation vectors of (0, 0), (0, 200), and

(−200, 0). Details in Table VIII

Output:

• graph of links consisting of certain trunks (Table IX)
• routing matrix with route entries for every demand (Table VIII)

Best solution:

• minimum sum of trunk costs found is 25304 units
• synergy, compared to three isolatedN15systems, is 26.3%
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TABLE VIII

Parameters for SystemN45and Optimization Results

Node x y S D C rord ralt

1 715 488 1 — — — —
2 200 450 1 32 1 2-36-31-1 2-32-28-1
3 771 47 0 32 1 3-19-1 3-10-1
4 818 214 1 64 1 4-19-1 4-34-1
5 833 511 1 96 1 5-1 5-20-16-1
6 320 205 1 32 1 6-36-28-1 6-40-10-1
7 982 401 0 64 1 7-19-1 7-5-1
8 626 872 1 96 1 8-16-1 8-38-31-1
9 385 613 1 32 1 9-31-1 9-21-28-1

10 587 265 1 64 1 10-25-31-1 10-1
11 858 789 0 64 1 11-20-16-1 11-5-1
12 64 494 1 32 1 12-42-28-1 12-39-31-1
13 77 68 1 96 1 13-36-31-1 13-28-1
14 746 878 1 64 1 14-8-16-1 14-20-5-1
15 125 260 0 96 1 15-28-1 15-36-31-1
16 715 688 1 — — — —
17 200 650 1 32 16 17-24-8-16 17-39-31-16
18 771 247 0 32 16 18-19-1-16 18-5-20-16
19 818 414 1 64 16 19-1-16 19-25-31-16
20 833 711 1 96 16 20-16 20-5-1-16
21 320 405 1 32 16 21-28-1-16 21-9-31-16
22 982 601 0 64 16 22-5-1-16 22-20-16
23 626 1072 1 96 16 23-8-16 23-38-31-16
24 385 813 1 32 16 24-8-16 24-38-31-16
25 587 465 1 64 16 25-31-16 25-19-1-16
26 858 989 0 64 16 26-8-16 26-20-16
27 64 694 1 32 16 27-38-8-16 27-39-31-16
28 77 268 1 96 16 28-1-16 28-36-31-16
29 746 1078 1 64 16 29-16 29-14-20-16
30 125 460 0 96 16 30-28-1-16 30-36-31-16
31 515 488 1 — — — —
32 0 450 1 32 31 32-2-36-31 32-28-1-31
33 571 47 0 32 31 33-6-36-31 33-34-1-31
34 618 214 1 64 31 34-25-31 34-1-31
35 633 511 1 96 31 35-25-31 35-1-31
36 120 205 1 32 31 36-31 36-28-1-31
37 782 401 0 64 31 37-19-1-31 37-25-31
38 426 872 1 96 31 38-31 38-8-16-31
39 185 613 1 32 31 39-27-38-31 39-31
40 387 265 1 64 31 40-31 40-10-1-31
41 658 789 0 64 31 41-8-16-31 41-38-31
42 −136 494 1 32 31 42-28-1-31 42-12-39-31
43 −123 68 1 96 31 43-13-36-31 43-28-1-31
44 546 878 1 64 31 44-8-16-31 44-38-31
45 −75 260 0 96 31 45-28-1-31 45-36-31

Note.Listed are the coordinatesx and y of the single nodes, the switch facility
S, its bandwidth needD (in Kbps) to the computing centerC, and the optimized
routingrord andralt for the normal case and for the failure case, respectively.
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TABLE IX

The 79 Links Used in the Optimized SystemN45

Link bord balt bt Costs Link bord balt bt Costs

1-5 160 160 2000 363 13-43 96 0 128 400
1-10 0 64 64 258 14-20 0 64 64 189
1-16 608 96 2000 600 14-29 0 64 64 200
1-19 320 64 2000 381 15-28 96 0 128 98
1-28 512 288 2000 2025 15-36 0 96 128 112
1-31 416 224 2000 600 16-20 160 160 2000 363
1-34 0 64 64 291 16-29 64 0 64 392
1-35 0 96 128 172 16-31 192 288 2000 849
2-32 32 32 64 200 17-24 32 0 64 247
2-36 64 0 64 258 17-39 0 32 64 40
3-10 0 32 64 286 18-19 32 0 64 174
3-19 32 0 64 370 19-25 0 64 64 237
4-19 64 0 64 200 19-37 64 0 64 39
4-34 0 64 64 200 20-22 0 64 64 186
5-7 0 64 64 186 20-26 0 64 64 280
5-11 0 64 64 280 21-28 32 32 64 279
5-18 0 32 64 272 23-38 0 96 128 566
5-20 0 128 128 400 24-38 0 32 64 72
5-22 64 0 64 175 25-31 288 128 2000 228
6-33 32 0 64 297 25-34 64 0 64 253
6-36 64 0 64 200 25-35 96 0 128 132
6-40 0 32 64 90 25-37 0 64 64 206
7-19 64 0 64 165 27-38 64 0 64 404
8-14 64 0 64 121 27-39 32 32 64 146
8-16 544 96 2000 615 28-30 96 0 128 396
8-23 96 0 128 400 28-32 0 64 64 198
8-24 64 0 64 249 28-36 32 96 128 154
8-26 64 0 64 260 28-42 64 0 64 311
8-38 32 96 128 400 28-43 0 96 128 566
8-41 64 0 64 89 28-45 96 0 128 306
8-44 64 0 64 81 30-36 0 96 128 512
9-21 0 32 64 218 31-36 320 384 2000 1458
9-31 32 32 64 181 31-38 128 352 2000 1185
10-25 64 0 64 200 31-39 0 64 64 353
10-40 0 64 64 200 31-40 64 0 64 258
11-20 64 0 64 82 33-34 0 32 64 174
12-39 0 64 64 170 36-45 0 96 128 406
12-42 32 32 64 200 38-41 0 64 64 247
13-28 0 96 128 400 38-44 0 64 64 121
13-36 192 0 2000 432

Note.Listed for each link is the accumulated bandwidthbord due to the normal routingsrord, the
accumulated bandwidthbalt due to the routings in case of failureralt, the bandwidthbt of the resulting
trunk needed, and its cost. All bandwidths are given in Kbps.
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VI. SYSTEMATIC STUDIES ON THE TSP

In this section we present R&R for the Traveling Salesman Problem PCB442, based on
single configurations, such that decision rules as SA, TA, GRE (and even Random Walk)
are applicable to guide the search in the configuration space. We will provide results for all
important parts of an optimization run using the R&R method. We will then compare these
results to well-known results for local search optimization using Lin-2-opt as mutation.

A. Initial Solution

Usually, a random configuration serves as a starting point for an optimization run with
local search using “non-intelligent” mutations of small order. This choice corresponds to a
typical solution produced by non-intelligent mutations in a Random Walk. In contrast, the
R&R optimization run starts with a configuration resulting from a creation of the whole sys-
tem (R&Rall). Figure 7 compares the distribution of randomly created configurations to the
distribution of the R&R starting configurations. The mean length of a random configuration
is approximately 770,000. This compares to the mean length of a R&Rall configuration of
58,140, which is only 15% above the optimum solution (50,783.5). This is a first advantage
of the R&R method: the optimization starts much closer to the optimum. We therefore save
the calculation time that an optimization run with small mutations needs to descend from
these high values of a random solution and can concentrate on reducing this “15%.”

B. Optimization Run

A typical Monte Carlo optimization run using the meta-heuristics SA, TA, or GDA starts
with a Random Walk, and ends with Greedy Acceptance. Here, we want to discuss the
particular behavior of the R&R mutations for these marginal decision rules. Finally, we
present results with TA.

FIG. 7. Distribution of the lengths received both for 100,000 randomly created solutions and for 100,000
solutions generated with the best-insertion heuristics for the PCB442 problem. Left border, minimum at 50,783.5;
right border, maximum tour length is approximately 1,130,000. Both distributions are obviously log-gaussian; the
distribution generated by the best-insertion heuristics is much smaller and has therefore a higher peak, furthermore,
its peak is close to the optimum.
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1. Random Walk. It can be easily shown that a Random Walk using mutations of small
order without “intelligence” like Lin-2-opt produces the same distribution of configurations
as a random generation of configurations (Fig. 7). However, one might ask whether R&R
mutations withA<N change the distribution of the lengths of the solutions generated
by R&Rall. Figure 8 displays the distributions resulting from a R&Rall followed by 100

FIG. 8. Distributions of the lengths received for 100,000 solutions generated with the best-insertion heuristics
and altered with 100 mutations in a Random Walk. In each figure, results for different ratiosF are provided. We
realize that for not too largeF the peaks of the gaussian distributions are always displaced to better values. Using
R&Rrad or R&Rran one gets better results; however, the quality of the solutions is getting worse with R&Rsequsing
a largeF .
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mutations in a Random Walk for different values ofF . We find that the distributions differ
significantly. For smallF the solutions are improved, which is quite clear. Due to the
best-insertion strategy the system shows a Greedy Acceptance-like behavior. For a large
F we find different results for the 3 mutation types: R&Rran provides the best results for
largerF , R&Rrad hardly changes the distribution, and R&Rseqworsens the solutions. This
can also be seen in Table X, which shows statistics corresponding to Fig. 8.

These results can easily be explained by the fact that R&Rran can make best use of
the remaining tour, since the removed nodes are uniformly distributed over the system,

TABLE X

Results for Creating a Starting Configuration with R&R all and Altering It by 100 Mutations,

at the Top If Using Random Walk, at the Bottom Working with Greedy

Acceptance Ruin F 〈l 〉 1l l min lmax

RW rad 1 57546 2.4 54342 61260
2 57345 2.4 54096 61024
5 57299 2.5 53928 60823

10 57692 2.5 53712 61400
20 58018 2.6 54376 61781
50 58174 2.6 54975 61862

ran 1 57423 2.3 54179 60908
2 56918 2.3 53495 60071
5 56089 2.1 53103 59046

10 55581 2.1 52779 58874
20 55144 2.0 52522 58022
50 54740 2.1 52265 58061

seq 1 57543 2.4 54656 60984
2 57427 2.4 54090 60790
5 57636 2.7 54090 61894

10 58227 3.0 53890 62841
20 58712 3.1 55013 63692
50 58901 3.4 55139 64824

rad 1 57344 2.3 54269 60620
2 56635 2.2 53682 59728
5 55425 2.0 52588 58642

10 54762 1.8 52610 57985
20 54490 1.6 52319 56634
50 54758 1.5 52642 56623

GRE ran 1 57425 2.3 54334 60864
2 56905 2.3 53723 60290
5 56045 2.1 53256 58973

10 55488 2.1 52828 58628
20 55028 2.0 52510 57881
50 54520 2.0 51896 57278

seq 1 57319 2.3 54124 60576
2 56564 2.2 53868 59402
5 55314 2.1 52719 58206

10 54736 1.9 52510 57220
20 54634 1.8 52482 57033
50 55024 1.6 53045 56976
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such that a good framework remains for their reinsertion. R&Rrad completly reconstructs
the system within a disc having only a few clues into the surrounding of the limiting cir-
cle. The ruin part of R&Rseq produces a long edge in the system. Here, nodes are often
inserted into other edges, such that this mutation frequently results in a long edge. There-
fore, this mutation provides an example for a bad combination of a ruin and a recreate.
Note that we do not speak of a bad sequential ruin; only the combination does not provide
good results. For example, the combination of a sequential ruin and a recreate reinsert-
ing the nodes only between the two limiting nodes of the long edge may provide good
results.

2. Greedy Acceptance.For comparison, we now discuss analogous results with Greedy
Acceptance. They are shown in Fig. 9 and Table X. First, we find that nearly all GRE results
are better than the RW results. The largest differences are obtained for radial and sequential
ruin, whereas the improvement is only small for random ruin. The results do not differ much
for smallF because here Greedy Acceptance and Random Walk coincide: A ruin of a single
node followed by best-insert always results in the same or a better configuration, and for a
few nodes only very small deteriorations can happen. Second, the GRE distributions show
a sharper peak for largerF , and the peak is shifted towards smaller lengths. However, using
F = 0.5 produces results worse thanF = 0.2 when working with sequential or radial ruins.
The optimum fractionF depends on the kind of the ruin and is close to 0.2 for radial ruin.

3. Comparison: Random Walk/Greedy Acceptance.Until now, we have only seen a
trend for the single mutations. But the journey to other values of the objective function has
not yet ended after 100 mutations, both for RW and for GRE. Figure 10 displays the total
length, averaged over 10 independent runs, as a function of the number of mutations applied.
It can be clearly seen that R&Rrad and R&Rseq cannot improve the R&Rall solutions in a
Random Walk with a largeF ; the corresponding runs with a smallF show nearly the same
behavior as their GRE counterparts. Using the random ruin we get a completely different
behavior. As shown in Fig. 8 the mean length monotonously decreases for all values ofF .
For Greedy Acceptance all curves decrease sigmoidally. The best results are achieved by
using a largeF , because these mutations are able to reorder the system on a larger scale, and
therefore to find better improvements. Again, radial and sequential ruin are more similar
to each other than to random ruin. We have to mention that in spite of the huge amount of
calculation time we invested for the results shown in Fig. 10, most graphs indicate that the
single systems are still not equilibrated for a certainF . Especially when using random ruin,
further improvements could be found.

4. Threshold Accepting.Although R&R achieves quite good solutions even with Greedy
Acceptance, we now want to provide results for combining R&R with TA. Figure 11 (left)
displays the deviationδ of the lengthl from the optimum lengthlopt,

δ = 100· 〈l 〉 − lopt

lopt
, (6.1)

as a function of the CPU time for 6 different cooling schedules, for Lin-2-opt mutations,
and for R&R mutations, respectively. The average is taken over 20 runs. One second of
CPU time corresponds to 100 R&R mutations with(F = 0.2) and to 300,000 Lin-2-opt
mutations. The following cooling schedules are used:
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FIG. 9. Distributions of the lengths received for 100,000 solutions generated with the best-insertion heuristics
and altered with 100 mutations using Greedy Acceptance. In each figure results for different ratiosF are provided.

• Linear decay,

T = T0 · (1− x). (6.2)

• Exponential decay,

T = T0 · exp(−ln 2 · x/α). (6.3)

with half-livesα= 0.2, 0.4, 0.6, and 0.8.
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FIG. 10. Averaged length as a function of the number of the R&R mutations, starting from an R&Rall

configuration for choosing radial, random, and sequential ruin with different fractionsF . Left, for Random Walk;
right, for Greedy Acceptance.

• Greedy,

T = 0. (6.4)

T is the instantaneous threshold, andx denotes the continuous schedule variable, increased
from 0 to 1, which is equal to the ratio of the number of the current step to the total number
of cooling steps. Each optimization run is terminated by anx-range [1.0 : 1.1] using Greedy
Acceptance to assure reaching a local optimum. The initial thresholdT0 for the cooling
schedules is determined by the standard deviation of an initial Random Walk of 1000 muta-
tions. Using R&R mutations with a 1 : 1 mixture of random ruin and radial ruin with the best
found fractionF = 0.2 we obtainedT0= 230. For Lin-2-opt mutations one thus gets about
T0= 980. However, as proposed by Duecket al. [3] we took T0= 130 for the Lin-2-opt
mutations, which gives better results. Figure 11 (left) shows that the results for R&R are
highly independent of the schedule applied. However, TA can improve the optimization
result. On the other hand, the quality of the results is more sensitive to the schedule when
working with the Lin-2-opt. Here, linear cooling and exponential cooling with a decay of
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FIG. 11. Left, time development of the deviation, averaged over 50 runs, using R&R and Lin-2-opt with
different cooling schedules (see text). Total CPU time for each run is 16 s. Right, optimization results, averaged
over 50 runs, as a function of the total simulation time. The errorbars denote the standard deviations. Dashed, for
R&R with linear cooling; solid, for Lin-2-opt with exponential cooling (α= 0.4). Additionally, the average results
for R&R with Greedy Acceptance are marked by+ . Several times the optium value of 50,783.5 was reached
using R&R with TA.

α= 0.4 provide rather good results, close to those achieved with the cooling schedule pro-
posed in an earlier paper [3]. Figure 11 (right) shows the results using the “optimum” value
of α= 0.4, comparing it with GRE results. In all cases the R&R is superior to Lin-2-opt.

VII. COMPUTATIONAL DETAILS

All optimization runs were performed on a RS 6000, model 43P, 233 MHz with 512MB
memory. An important point to mention is the applicability of our approach to very large
vehicle routing problems. This is due to the fact that inherently R&R is suitable for parallel
execution. Most time consuming is the calculation of the cost of acceptance for a customer
by a vehicle, especially for the recreate steps. The recreate steps consume about 90% of the
whole computing time. These calculations can easily be parallelized on the vehicle basis,
since the single vehicle calculations do not interdepend. This is even valid for the single
tests on different potential positions inside a single vehicle tour.

VIII. CONCLUSION AND OUTLOOK

We have given computational evidence of the validity of the R&R principle. From the
pure view of a mathematician, one might say, “OK, but this new method does work with
larger exchange moves only, and everything is known and classical.” Yes, the observation
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that larger moves are essential for more difficult problems where a critical part of the task
is to generate fully admissible solutions is new.

For these harder optimization problems our current approach or view seems to be really
essential, scientifically and, above all, for our practical work. In our optimization services
work for industrial customers we had a hard time giving solutions for flight scheduling, car
sequencing, or steel mill optimization just by applying the classical simulated annealing
or threshold accepting methods. When we worked with pure threshold accepting in the
past years, we had the philosophy that the simplest moves are the best. Advice: use your
CPU time for millions of simple and fast exchange moves! Do not try to make hybrid or
“intelligent” exchange moves which consume much more CPU time. Thousands of simple
moves should be better than a single complex move! This was our message that time. Time
goes by, of course.

From a mathematician’s point of view, as said, R&R is a generalization of SA or TA. For
our thinking, however, R&R gives a different way to view difficult problems. Currently,
we are scanning our optimization logbook for problems where we didn’t really succeed.
We’ll try again, for instance, chip placement and scheduling. At present, we are successfully
applying R&R to car sequencing: produce them in a smooth order, such that their individual
features do not cause too much variance of the production time in each phase.
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